Справка
STUDENT'S CONSULTANT
Электронная библиотека технического вуза
Все издания
Login/Registration
Во весь экран / Свернуть
ru
Accessibility
General Catalogue
Все издания
Menu
Искать в книге
К результату поиска
Advanced search
Bookmarks
Homepage
Login/Registration
Во весь экран / Свернуть
ru
Управление
My reports
General Catalogue
Издательства
УГС
Мои списки
Download app
Neural networks fundamentals in mobile robot control systems
Оборот титула
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
-
2.1. Parametric adaptation of the neural threshold element
2.2. The perceptron rule of adaptation
2.3. Mays adaptation rule
2.4. Adaptive linear element
2.5. α - Least Mean Square Algorithm
2.6. Mean Square Error Method
2.7. μ - Least Mean Square Algorithm
2.8. Adaline with sigmoidal functions
2.9. Backpropagation method
2.10. A simple network with three neurons
2.11. Backpropagation learning
2.12. Problems
Practical training 3
2.13. Task for practical training 3
2.14. Example of the practical training 3 performing
2.15. Variants
2.16. Requirements to the results representation
Practical training 4
2.17. Task for practical training 4
2.18. Example of the practical training 4 performing
2.19. Variants
2.20. Requirements to the results representation
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
+
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
+
BIBLIOGRAPHY
Close Menu
Раздел
2
/
5
Страница
1
/
32
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
/
/
Внимание! Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Для продолжения работы требуется
Registration
General Catalogue
Издательства
УГС
Мои списки
Скачать приложение
Neural networks fundamentals in mobile robot control systems
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
-
2.1. Parametric adaptation of the neural threshold element
2.2. The perceptron rule of adaptation
2.3. Mays adaptation rule
2.4. Adaptive linear element
2.5. α - Least Mean Square Algorithm
2.6. Mean Square Error Method
2.7. μ - Least Mean Square Algorithm
2.8. Adaline with sigmoidal functions
2.9. Backpropagation method
2.10. A simple network with three neurons
2.11. Backpropagation learning
2.12. Problems
Practical training 3
2.13. Task for practical training 3
2.14. Example of the practical training 3 performing
2.15. Variants
2.16. Requirements to the results representation
Practical training 4
2.17. Task for practical training 4
2.18. Example of the practical training 4 performing
2.19. Variants
2.20. Requirements to the results representation
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
+
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
+
BIBLIOGRAPHY