Справка
STUDENT'S CONSULTANT
Электронная библиотека технического вуза
Все издания
Login/Registration
Во весь экран / Свернуть
ru
Accessibility
General Catalogue
Все издания
Menu
Искать в книге
К результату поиска
Advanced search
Bookmarks
Homepage
Login/Registration
Во весь экран / Свернуть
ru
Управление
My reports
General Catalogue
Издательства
УГС
Мои списки
Download app
Neural networks fundamentals in mobile robot control systems
Оборот титула
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
+
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
+
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
-
4.1. Different Criteria for Error Measure
4.2. Complexities in Regularization
4.3. Weight Decay Approach
4.4. Weight Elimination Approach
4.5. Chauvin's Penalty Approach
4.6. Network Pruning Through Sensitivity Calculation
4.7. Karnin's Pruning Method
4.8. Optimal Brain Damage
4.9. Calculation of the Hessian Matrix
4.10. Second-order Optimization Learning Algorithms
4.11. Recursive Estimation Learning Algorithms
4.12. Tapped Delay Line Neural Networks
4.13. Applications of TDLNN for Adaptive Control Systems
4.14. Problems
Practical training 7
4.15. Task for practical training 7
4.16. Example of the practical training 7 performing
4.17. Variants
4.18. Requirements to the results representation
BIBLIOGRAPHY
Close Menu
Раздел
4
/
5
Страница
1
/
37
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
/
/
Внимание! Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Для продолжения работы требуется
Registration
General Catalogue
Издательства
УГС
Мои списки
Скачать приложение
Neural networks fundamentals in mobile robot control systems
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
+
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
+
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
-
4.1. Different Criteria for Error Measure
4.2. Complexities in Regularization
4.3. Weight Decay Approach
4.4. Weight Elimination Approach
4.5. Chauvin's Penalty Approach
4.6. Network Pruning Through Sensitivity Calculation
4.7. Karnin's Pruning Method
4.8. Optimal Brain Damage
4.9. Calculation of the Hessian Matrix
4.10. Second-order Optimization Learning Algorithms
4.11. Recursive Estimation Learning Algorithms
4.12. Tapped Delay Line Neural Networks
4.13. Applications of TDLNN for Adaptive Control Systems
4.14. Problems
Practical training 7
4.15. Task for practical training 7
4.16. Example of the practical training 7 performing
4.17. Variants
4.18. Requirements to the results representation
BIBLIOGRAPHY