Справка
STUDENT'S CONSULTANT
Электронная библиотека технического вуза
Все издания
Login/Registration
Во весь экран / Свернуть
ru
Accessibility
General Catalogue
Все издания
Menu
Искать в книге
К результату поиска
Advanced search
Bookmarks
Homepage
Login/Registration
Во весь экран / Свернуть
ru
Раздел
2
/
5
Страница
1
/
32
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
/
/
Внимание! Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Для продолжения работы требуется
Registration
Управление
My reports
General Catalogue
Издательства
УГС
Мои списки
Download app
Neural networks fundamentals in mobile robot control systems
Оборот титула
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
-
2.1. Parametric adaptation of the neural threshold element
2.2. The perceptron rule of adaptation
2.3. Mays adaptation rule
2.4. Adaptive linear element
2.5. α - Least Mean Square Algorithm
2.6. Mean Square Error Method
2.7. μ - Least Mean Square Algorithm
2.8. Adaline with sigmoidal functions
2.9. Backpropagation method
2.10. A simple network with three neurons
2.11. Backpropagation learning
2.12. Problems
Practical training 3
2.13. Task for practical training 3
2.14. Example of the practical training 3 performing
2.15. Variants
2.16. Requirements to the results representation
Practical training 4
2.17. Task for practical training 4
2.18. Example of the practical training 4 performing
2.19. Variants
2.20. Requirements to the results representation
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
+
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
+
BIBLIOGRAPHY
Close Menu