Справка
x
STUDENT'S CONSULTANT
Электронная библиотека технического вуза
Все издания
Login/Registration
Во весь экран / Свернуть
ru
Accessibility
General Catalogue
Все издания
Menu
Искать в книге
К результату поиска
Advanced search
Bookmarks
Homepage
Login/Registration
Во весь экран / Свернуть
ru
Раздел
3
/
5
Страница
1
/
48
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
/
/
Внимание! Для озвучивания и цитирования книги перейдите в режим постраничного просмотра.
Для продолжения работы требуется
Registration
Управление
My reports
General Catalogue
Издательства
УГС
Мои списки
Download app
Neural networks fundamentals in mobile robot control systems
Оборот титула
Table of contents
1. LECTURE: INTRODUCTION TO NEURAL NETWORKS
+
2. LECTURE: BASES OF LEARNING OF NEURAL NETWORKS
+
3. LECTURE: MULTILAYERED FEEDFORWARD STATIC NEURAL NETWORKS
-
3.1. Two layered neural network mathematical description
3.2. Generalized delta rule
3.3. Network with linear output neurons
3.4. Structure of a multi-layered feedforward neural network
3.5. Description of a multi-layered feedforward neural network
3.6. Generalized Delta Rule for MFNN
3.7. Recursive computation of delta
3.8. Momentum BP algorithm
3.9. A Summary of BP learning algorithm
3.10. Some issues in BP learning algorithm
3.11. Local minimum problem
3.12. Problems
Practical training 5
3.13. Task for practical training 5
3.14. Example of the practical training 5 performing
3.15. Variants
3.16. Requirements to the results representation
Practical training 6
3.17 Task for practical training 6
3.18. Example of the practical training 6 performing
3.19. Variants
3.20. Requirements to the results representation
4. LECTURE: ADVANCED METHODS FOR LEARNING NEURAL NETWORKS
+
BIBLIOGRAPHY
Close Menu